15. বীজগাণিতিক সংখ্যামালার সরলীকরণ | কষে দেখি 15 | Exercise 15 | Ganit Prabha Class VIII math solution | WBBSE Class 8 Math Solution in Bengali
গণিত প্রভা VIII কষে দেখি 15 সমাধান
\(\frac{63a^3b^4}{77\ \ b^5}\)
\(=\frac{9a^3}{{11b}^{5-4}}\)
\(\frac{18a^4b^5c^2}{21a^7b^2}\)
\(=\frac{6b^{5-2}c^2}{{7a}^{7-4}}\)
\(=\frac{x^2-2x-x+2}{x^2-1^2}\)
\(=\frac{x\left(x-2\right)-1(x-2)}{\left(x+1\right)(x-1)}\)
\(=\ \frac{a+1}{a-2}\times\frac{a^2+a-2a-2}{a\left(a+1\right)}\)
\(=\frac{a+1}{a-1}\times\frac{a\left(a+1\right)-2\left(a+1\right)}{a\left(a+1\right)}\)
\(=\frac{1}{\left(a-2\right)}\times\frac{\left(a+1\right)\left(a-2\right)}{a}\)
\(=\frac{p^3+q^3}{p^2-q^2}\times\frac{p-q}{p+q}\)
\(=\frac{\left(p+q\right)\left(p^2+pq+q^2\right)}{\left(p+q\right)\left(p-q\right)}\times\frac{p-q}{p+q}\)
\(=\frac{x\left(x-3\right)+2\left(x-3\right)}{x(x+5)-1(x+5)}\times\frac{x\left(x+5\right)+1\left(x+5\right)}{x\left(x-3\right)-1\left(x-3\right)}\)
\(=\frac{x+2}{x-1}\times\frac{x+1}{x-1}\)
\(=\frac{x^2+2x+x+2}{x^2-2x+1}\)
\(=\frac{(a^2-ab+b^2)}{a^2+ab}\times\frac{a^3-b^2}{a^3+b^3}\)
\(=\frac{a^2-ab+b^2}{a(a+b)}\times\frac{a-b}{a^2-ab+b^2}\)
\(=\frac{a+b+c}{abc}\)
\(=\frac{a-b-c+a+b+c}{a}\)
\(=\frac{{x(x}^2+a^2)+b\left(x-a\right)-ax.x^3}{abx}\)
\(=\frac{2a^2b}{3b^2c}\times\frac{c^4}{3a^3}\times\frac{9a^2}{4bc^3}\)
\(=\frac{1}{x^2-2x-x+2}+\frac{1}{x^2-2x-3x+6}\)
\(+\frac{1}{x^2-3x-x+3}\)
\(=\frac{1}{(x-2)(x-1)}+\frac{1}{(x-2)(x-3)}\)
\(+\frac{1}{(x-3)(x-1)}\)
\(=\frac{3x-6}{(x-2)(x-1)(x-3)}\)
\(=\frac{3}{(x-1)(x-3)}\)
\(=\frac{3}{x^2-3x-x+3}\)
সমাধানঃ
\(=\frac{x+1+x-1}{(x-1)(x+1)}+\frac{2x}{x^2+1}+\frac{4x^3}{x^4+1}\)
\(=\frac{2x\left(x^2+1\right)+2x(x^2-1)}{(x^2-1)(x^2+1)}+\frac{4x^3}{x^4+1}\)
\(=\frac{4x^3}{(x^4-1)}+\frac{4x^3}{x^4+1}\)
\(=\frac{4x^3\left(x^4+1\right)+4x^3\left(x^4-1\right)}{(x^4-1)(x^4+1)}\)
(vii) \(\frac{b^2-5b}{3b-4a}\times\frac{9b^2-16a^2}{b^2-25}\div\frac{3b^2+4ab}{ab+5a}\)
\(\frac{b^2-5b}{3b-4a}\times\frac{9b^2-16a^2}{b^2-25}\div\frac{3b^2+4ab}{ab+5a}\)
\(=\frac{b(b-5)}{3b-4a}\times\frac{{(3b)}^2-{(4a)}^2}{b^2-5^2}\times\frac{a(b+5)}{b(3b+4a)}\)
\(=a\)
সমাধানঃ
\(=\frac{b+c}{\left(a-b\right)(a-c)}-\frac{c+a}{\left(a-b\right)(b-c)}+\frac{a+b}{\left(a-c\right)\left(b-c\right)}\)
\(=\frac{b^2-c^2-\left(a^2-c^2\right)+\left(a^2-b^2\right)}{(a-b)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{b^2-c^2-a^2+c^2+a^2-b^2}{(a-b)\left(a-c\right)\left(b-c\right)}\)
সমাধানঃ
\(=-\frac{b+c-a}{\left(a-b\right)(c-a)}-\frac{c+a-b}{\left(b-c\right)(a-b)}-\frac{a+b-c}{\left(c-a\right)(b-c)}\)
\(=-\left[\frac{b+c-a}{\left(a-b\right)(c-a)}+\frac{c+a-b}{\left(b-c\right)(a-b)}+\frac{a+b-c}{\left(c-a\right)(b-c)}\right]\)
\(=0\)
সমাধানঃ
\(=\ \frac{\frac{a^2}{x-a}+a+\frac{b^2}{x-b}+b+\frac{c^2}{x-b}+c}{\frac{a}{x-a}+\frac{b}{x-b}+\frac{c}{x-c}}\)
\(=\ \frac{\frac{ax}{x-a}+\frac{bx}{x-b}+\frac{cx}{x-b}}{\frac{a}{x-a}+\frac{b}{x-b}+\frac{c}{x-c}}\)
\(=\ \frac{x\left(\frac{a}{x-a}+\frac{b}{x-b}+\frac{c}{x-b}\right)}{\frac{a}{x-a}+\frac{b}{x-b}+\frac{c}{x-c}}\)
0 Comments